CARBON-13 PSEUDO-CONTACT SHIFTS IN STRUCTURE DETERMINATION:

THE HEMIKETAL DIMER FROM 2-HYDROXY-2-METHYLCYCLOBUTANONE.

J. C. Duggan and W. H. Urry*

Department of Chemistry, University of Chicago, Chicago, Illinois 60637, U. S. A.

Jacob Schaefer

Central Research Department, Monsanto Company, St. Louis, Missouri 63166 U. S. A. (Received in USA 29 July 1971; received in UK for publication 1 October 197.)

The dimer that crystallizes from the viscous mixture that develops as 2-hydroxy-2methylcyclobutanone 1 stands has been found to be a dioxolane 2a, rather than the dioxane 3a originally proposed. ¹ The decisive evidence came from a study of the effect of the paramagnetic shift reagent² <u>tris</u>-(2, 2, 6, 6-tetramethyl-3, 5-heptanedionato)europium(III) on the ¹³C nmr spectrum of 2b, the monoacetate of 2a. This is the first structure elucidation based upon ¹³C pseudo-contact shifts.

Prior to the insight from this valuable new tool and before experiments described below, structure <u>3</u>a was compatible with all known properties of this dimer, and with history. Its mass spectrum was in accord with fragmentations known for dioxane³ and cyclobutane derivatives. Its nmr spectra showed that it has no elements of symmetry. The ¹H nmr had two hydroxyl, and two methyl, singlets. The ¹³C nmr⁴ of this 10-carbon molecule showed nine lines with one of double intensity ($\delta_c 29.7$, Table 1). It was assumed that boat-to-boat

interconversion between the enantiomers of <u>3</u>a was slow on the nmr time scale.¹ The infrared spectrum showed two hydroxyl and strong C-O stretching bands, but no carbonyl.

Mass spectra ^a			¹³ C nmr ^b			l _{H nmr} c	
<u></u> a	<u>2</u> b	Composition	$\underline{2}a^d$	<u>2</u> b ^d	Slope ^e	<u>2</u> a	<u>2</u> b
183 (0.5)	183 (1)	m ⁺ - ro		167.4	9.0 (C=O)	6. 49 ^f	2. 04 ^g
172 (4)	214 (1)	м ⁺ - с ₂ н ₄	113.9	116.2	7.4 (C-1)	4. 85 ^f	5.04 ^f
	172 (4)	м. ⁺ - с ₄ н ₆ о	106.5	105.1	7.4 (C-3)	2.5-1.4 ^h	2. 5-1. 4 ^h
142 (20)	184 (12)	м ⁺ - с ₃ н ₆ о	85.8	86.0	5.2 (C-5)	1. 22 ^g	1. 34 ^g
101 (15)	143 (5)	м ⁺ - с ₅ н ₇ о ₂	79.1	78.5	34.0 (C-2')	1.16 ^g	1. 18 ^g
	101 (8)	м ⁺ - с ₇ н ₉ о ₃	31. 4	31. 2	13.4 (C-3')		
100 (14)	142 (5)	м ⁺ - с ₅ н ₈ о ₂	29.7	30.0	4.6; C-6,		
	100 (11)	м ⁺ - с ₇ н ₁₀ о ₃	29.7	29.0	6.6; C-7, or		
99 (20)	99 (51)	с ₅ н ₇ 0 ₂	28.4	28.8	4.6; C-4'		
84 (19)	84 (15)	с ₅ н ₈ о	23.0	21. 9	16.8 (2' CH ₃)		
83 (16)	83 (23)	с ₅ н ₇ о		21.0	4.6 (<u>C</u> H ₃ CO)		
			18.9	18.3	3.1 (5 CH ₃)		

Table	1.	Spectra	of	2a	and	2Ъ.
		±				

a) m/e of larger fragments (intensity as percent of base peak m/e 43). Compositions by exact mass measurement. AEI MS9 at 70 eV, direct inlet. Molecular ions (M⁺): 2a m/e 200, $C_{10}H_{16}O_4^+$ (not detected); 2b m/e 242, $C_{12}H_{18}O_5^+$ (detected at 12 eV and low resolution). b) Bruker HFX in pulsed mode at 22. 6 MHz; proton noise decoupling; probe 40°. c) Chemical shifts (δ) in dimethylsulfoxide-d, at 32°; 60 MHz; internal TMS. d) Chemical shifts in ppm downfield from external TMS, \pm^0 0.1 ppm. Solvents: pyridine (2a) and carbon tetrachloride (2b). e) Slope of plot of paramagnetic shift in ppm versus [Eu(thd)₃]/[2b] (assignment). f) s, 1, OH. g) s, 3, CH₃. h) m, 8, CH₂.

Since dioxadiene was converted to a dibromodioxane that was in turn converted to a diacetate, 5^{5} identical with that prepared from glycolaldehyde dimer; 6^{6} such crystalline hemiacetals from α -aldols and hemiketals from α -ketols have been assumed to be dioxanes. 7^{7} More recent physical evidence supports such structures for all of them that have been studied. 8^{8}

Although <u>2</u>a has a novel structure, its chemistry parallels that of the others. In all cases, a single dimer crystallizes from the complex mixture of such substances^{8b} that is formed

as the monomer is stored. All dissociate in solution, but 2a is surprisingly stable. For example, the acetoin dimer dissociates in a day, but this reaction of 2a to give 1 requires months, in dimethylsulfoxide. The latter reaction is rapid when 2a is heated, and it is catalyzed by acids and bases.

Doubts about structure <u>3</u> developed during studies on the esterification of the dimer. Its reaction with excess acetic anhydride in pyridine for 48 hr at 25° gave <u>only</u> a single monoacetate <u>2b</u> (mp 57-58°). Conversion to the diacetate required further reaction at 90° for 72 hr. A comparison of the infrared, mass, ¹H nmr, and ¹³C nmr spectra of <u>2a</u> and <u>2b</u> (Table 1) confirms that the two have the same skeleton. Also, the ¹H nmr spectrum of <u>2b</u> in isoquinoline was unchanged, except for indications of minor decomposition, after the solution had been held at 240° for 18 hr. These results might have been due to the conformer <u>3b</u> having a much lower free energy than the alternative one (<u>3</u>, R = H, R'= CH₃CO). However, treatment of <u>2b</u> with equimolar benzoyl chloride in pyridine gave the acetate-benzoate <u>2c</u> (mp 89-90°), and the reverse order of esterification gave the benzoate-acetate <u>2d</u> (mp 96-97°). These diesters were different substances; and their nmr spectra were virtually unchanged (again limited decomposition occurred) after 18 hr at 240° . One likely, and two unlikely, possibilities remained: the dimer had some other structure, such as <u>2a</u>; the structure <u>3</u> was rigid; or the compounds were stereoisomers of <u>3</u> with one <u>cis</u> and one <u>trans</u> ring junction.

Definitive evidence that the structure is $\underline{2}$ came from the observation that the largest 13 C pseudo-contact shift induced by incremental addition of Eu(thd)₃ to solutions of $\underline{2}$ b in carbon tetrachloride involved its line at δ_c 78.5 (Table 1), obviously then due to its hydroxyl-bearing carbon atom. ² Noise off-resonance decoupling experiments⁹ with $\underline{2}$ a showed that the four carbons that absorb at lowest field are quaternary. Also, those of $\underline{2}$ b giving the lines at δ_c 116.2 and 105.1 are attached to two oxygen atoms while those at δ_c 86.0 and 78.5 are linked to one. Therefore, since the carbon atom of $\underline{2}$ b that bears it hydroxyl group has no other oxygen attached, $\underline{3}$ b and its stereoisomers are eliminated. Except for structure $\underline{2}$ b, all others that have been visualized fail to account for the ¹³C nmr spectra and pseudo-contact shifts observed. Of course, the chemistry and other physical properties of the dimer are consistent with $\underline{2}$. However, a decision between the four <u>cis</u>-fused <u>dl</u> pairs of stereoisomers of 2 is not permitted by the present evidence. Dioxolane dimers from five other 2-hydroxycyclobutanones have been isolated. Most, like 2a, are insoluble in solvents in which the shift reagent is effective, but the dimer from 2-hydroxy-2, 3, 3-trimethylcyclobutanone $\underline{4}$ is soluble in carbon tetrachloride. However, Eu(thd)₃ excessively broadened its ¹H nmr signals and catalyzed its dissociation to $\underline{4}$, and the ketol rearrangement of $\underline{4}$. ¹⁰ The ¹H paramagnetic shifts of 2b were measured without such difficulties but did not permit structural conclusions.

References

- 1. W. H. Urry, D. J. Trecker and D. A. Winey, Tetrahedron Letters, 609 (1962).
- (a) C. C. Hinckley, J. Amer. Chem. Soc., <u>91</u>, 5160 (1969); (b) J. K. M. Sanders and D. H. Williams, <u>ibid.</u>, <u>93</u>, 641 (1971); (c) H. Hart and G. M. Love, <u>Tetrahedron Letters</u>, 625 (1971); (d) J. Briggs, F. A. Hart, G. P. Moss, and E. W. Randall, <u>Chem. Commun.</u>, 364 (1971); (e) O. A. Gansow, M. R. Willcott, and R. E. Lenkinski, <u>J. Amer. Chem. Soc.</u>, <u>93</u>, 4295 (1971).
- (a) W. Muller-Mulot, Hoppe-Seyler's Z. Physiol. Chem., <u>351</u>, 56 (1970); (b) C. Anselmi et al., <u>Tetrahedron Letters</u>, 1743(1970); (c) A. I. Cohen, I. T. Harper, and S. D. Levine, <u>Chem. Commun.</u>, 1610 (1970).
- For details of the ¹³C nmr instrumentation used in this work see J. Schaefer, <u>Macro-molecules</u>, 4, 98 (1971).
- 5. R. K. Summerbell and L. K. Rochen, J. Amer. Chem. Soc., 63, 3241 (1941).
- 6. H. O. L. Fischer and C. Taube, Ber., 60B, 1704 (1927).
- 7. (a) G. Baumeyer, G. Dittus, and E. Muller in "Methoden der Organischen Chemie, " (Houben-Weyl), 4th Ed., Vol. VI/4, E. Muller, Ed., Georg Thieme Verlag, Stuttgart, 1966, pp. 410-442; (b) C. B. Kremer and L. K. Rochen in "Heterocyclic Compounds," Vol. 6, R. C. Elderfield, Ed., John Wiley and Sons, Inc., New York, 1957, pp. 7-10; (c) D. C. England, J. Amer. Chem. Soc., 83, 2205 (1961).
- (a) J. C. Jochims and G. Taigel, <u>Tetrahedron Letters</u>, 5483 (1968); (b) D. Gardiner, <u>Carbohydrate Research 2</u>, 234 (1966); (c) H. Michelsen and P. Klaboe, <u>J. Mol. Structure</u>, <u>4</u>, 293 (1969); (d) J. Hvoslef, <u>Acta Chem. Scand.</u>, <u>24</u>, 2238 (1970); (e) G. C. S. Collins and W. O. George, <u>Chem. Commun.</u>, 501 (1971).
- 9. E. Wenkert, A.O. Clouse, D.W. Cochran, and D. Doddrell, <u>J. Amer. Chem. Soc.</u>, <u>91</u>, 6879 (1969).
- 10. W. H. Urry, J. C. Duggan and M. H. Pai, ibid., 92, 5785 (1970).